Convert the complex number 41−√3i41−√3i41−√3i into polar form.
Answer:
2(cosπ3+i sinπ3)2(cosπ3+i sinπ3)2(cosπ3+i sinπ3)
- [Math Processing Error]
- Let, [Math Processing Error]
The standard polar form of a complex number is r(cosθ+i sinθ)r(cosθ+i sinθ)
- On comparing zz with the standard polar form of a complex number, we get,
r cos θ=1r cos θ=1 and r sin θ=√3r sin θ=√3
Now, [Math Processing Error] On Adding (2)(2) and (4)(4) we get,
[Math Processing Error] - Substituting the value of rr in eq (1)(1) and (3)(3) we get,
cosθ=12cosθ=12 and sinθ=√32sinθ=√32
⟹θ=π3⟹θ=π3 - Hence, the polar form of the complex number z=1+√3iz=1+√3i is 2(cosπ3+i sinπ3)2(cosπ3+i sinπ3).