Convert the complex number 413i413i413i into polar form.


Answer:

2(cosπ3+i sinπ3)2(cosπ3+i sinπ3)2(cosπ3+i sinπ3)

Step by Step Explanation:
  1. [Math Processing Error]
  2. Let, [Math Processing Error] The standard polar form of a complex number is r(cosθ+i sinθ)r(cosθ+i sinθ)
    Θ y y' x' x O P(1, √3)
  3. On comparing zz with the standard polar form of a complex number, we get,
    r cos θ=1r cos θ=1 and r sin θ=3r sin θ=3
    Now, [Math Processing Error] On Adding (2)(2) and (4)(4) we get,
    [Math Processing Error]
  4. Substituting the value of rr in eq (1)(1) and (3)(3) we get,
    cosθ=12cosθ=12 and sinθ=32sinθ=32
    θ=π3θ=π3
  5. Hence, the polar form of the complex number z=1+3iz=1+3i is 2(cosπ3+i sinπ3)2(cosπ3+i sinπ3).

You can reuse this answer
Creative Commons License
whatsapp logo
Chat with us