If cosec θ−sin θ=m and sec θ−cos θ=n, prove that
(m2n)23+(mn2)23=1.
Answer:
- Let us first calculate the value of m2n and mn2.
m2n=(cosec θ−sin θ)2.(sec θ−cos θ)=(1sin θ−sin θ)2.(1cos θ−cos θ)=(1−sin2 θ)2sin2 θ.(1−cos2 θ)cos θ=(cos2 θ)2sin2 θ.sin2 θcos θ [∵ - Now,
\begin{align} mn^2 &= (cosec {\space} \theta - sin {\space} \theta) . (sec {\space} \theta - cos {\space} \theta)^2 \\ &= \bigg( \dfrac { 1 } { sin {\space} \theta} - sin {\space} \theta \bigg) . \bigg( \dfrac { 1 } { cos {\space} \theta} - cos {\space} \theta \bigg)^2 \\ &= \dfrac { ( 1 - sin^2{\space} \theta ) } { sin {\space} \theta } . \dfrac { ( 1 - cos^2{\space} \theta )^2 } { cos^2{\space} \theta }\\ &= \dfrac { cos^2{\space} \theta } { sin {\space} \theta }{\times}\dfrac { (sin^2{\space} \theta)^2 } { cos^2{\space} \theta } \space\space\space\space\space\space\space\space [\because 1 - sin {\space} \theta = cos^2{\space} \theta {\space} and {\space} 1 - cos^2{\space} \theta = sin^2{\space} \theta ] \\ &= sin^3{\space} \theta \\ \therefore {\space}{\space}{\space} &(mn^2)^\frac { 1 } { 3 } = sin{\space} \theta \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\ldots \text{(ii)} \end{align} - On squaring and adding \text{(i)} and \text{(ii)}, we get \begin{aligned} (m^2n)^\frac { 2 } { 3 } + (mn^2)^\frac { 2 } { 3 } = (cos{\space} \theta)^2 + (sin{\space} \theta)^2 = 1 \space\space\space\space\space\space\space\space\space\space[\because cos^2{\space} \theta + sin^2{\space} \theta = 1] \end{aligned}
- Hence, (m^2n)^\frac { 2 } { 3 } + (mn^2)^\frac { 2 } { 3 } = \bf 1.