Prove that the perpendiculars drawn from the vertices of equal angles of an isosceles triangle to the opposite sides are equal.


Answer:


Step by Step Explanation:
  1. Let ABC be an isosceles triangle with B = C. Now, let us draw the perpendiculars from B and C to the opposite sides.

    Thus, BDAC and CEAB.
      A B C E D
  2. We need to prove that BD=CE.
  3. In BCD and BCE, we have BC=BC[Common]BDC=CEB[Each 90]BCD=CBE[As ABC is an isosceles triangle.] BCDBCE[By AAS criterion]
  4. As the corresponding parts of congruent triangles are equal, we have BD=CE
  5. Thus, the perpendiculars drawn from the vertices of equal angles of an isosceles triangle to the opposite sides are equal.

You can reuse this answer
Creative Commons License
whatsapp logo
Chat with us